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Abstract-The conditions of equilibrium at a thermally loaded interface are considered in detail. A
series of numerical models are presented to illustrate the nature of the stress system at the interface.
These consist of two- and three-dimensional finite element case studies which show the limitations
of e:\isting appro:\imate analytical solutions. and document the presence of very large normal stress
gradients. The stress systems determined in the finite element calculations are in agreement with
those of an experimental investigation which documented a change in sign of the stress normal to
the interface. on either side of it. but which had insufficient resolution to detect the reversal of the
stress which is needed to satisfy equilibrium. The implications of these large stress gradients
arc discussed in terms of problems involving laminated fiber composites and general bimaterial
interfaces.

INTRODUCTION

A stress analysis of the heated bimetullic strip shown in Fig. I was first performed by
Timoshenko (1925), who used a plane elasticity approuch to predict the rudius of curvature
of such .1 strip. This model wus successfully applied to the design of thermostats. Timo
shenko's .tnalysis predicted that the strip would develop a constant radius of curvature
ulong its length. a result whkh is ulso derived from strength of materials arguments.
Timoshenko himself pointed out a limitation of his analysis in that it could not account for
the zcro .txiul stress condition at the ends of the strip. Away from the ends of the strip,
Tirnoshenko's solution is one-dimensional in y with the stresses defined by

Strip I:

CT,., = r .• ,!', = 0

Strip 2:

CT" 3(I+m)(l'2/c2)-(m Jn+l)

CTI' Aj;,
CT,., = r ',", = 0

YI

Y,
~lll E I at VI strip 2 l' =2C,
r--x, E a, VI strip I I, =2C t,

Fig. I. General geometry of Ihe bimetallic strip for plane elasticity analysis (Timoshenko. 1925).
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c, t I
m=-=-

Cz t z

n = £'/£2

A = 3(1 +m)2+(1 +mn)(m 2 + I/mn)

U r = (':1.2 -:x.dJ£,£z!:iT

£, and £2 the Young's modulus of the materials, and Xl and ':1.2 the coefficients of thennal
expansion. Stress components ux ,. u.,., and 1'.t,y, (u t ,. u).z and r.t , ..) are caused in Strip I
(Strip 2) by a change of temperature !:iT.

Hess (1969) examined the stress distributions near the ends of a bimaterial interface
where the shear stresses at the interface were significant. A stress field for the end loaded
plate. due to Bogy (1968), was superimposed on that from Timoshenko's solution to satisfy
equilibrium at the free ends. Hess showed that Timoshenko's solution was accurate provided
that the length of the bimetal plate was more than twice the total depth and that the stresses
were calculated no closer than at a distance equal to the total depth from the free ends.

Recently Wood et al. (1989) performed a detailed experimental (moire interferometry)
analysis of the in-plane surface displacement fields in the interface region of a thermally
loaded square steel/brass bimetal plate which had the dimensions and material properties
shown in Fig. 2. The strains were obtained by taking the appropriate derivatives. and the
stress components determined from Hooke's Law for plane stress conditions. The result of
this was that the normal stress component perpendicular to the interface was large and
tensile in the steel, and large and compressive in the brass, when the bimetal plate was
cooled through 240 'F. It appeared then that the conditions of equilibrium were violated
across the bimaterial interface (Morton and Post, 1989).

~ E(Ms;) v a (lII"F)t'ulcrul

Sled 29.5 0.29 6.9

Brass 15.9 0.33 10.8

~T= -240· F

Fig. 2. Plate geometry and material properties used in the moire e:'tperiment (Wood e/ al.• 1989).
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The bimaterial interface has practical applications in thermostats in which the mismatch
of material properties is exploited. Bimaterial interfaces are also common in the semicon
ductor industry where the mismatch of thermal and mechanical properties can cause severe
manufacturing. service and durability problems. Parallels can also be drawn in composite
technology. It is well known that laminates develop free-edge effect stresses which are not
predicted by classical lamination theory but which are required for equilibrium. and which
can be the cause of damage and failure in composites. On an even smaller scale. the
fiber/matrix interface at a free surface would suffer from a stress system. as a result of the
fabrication process or under service thermal loading. which has the same large differences
in the normal stresses as the interface was approached from the fiber or the matrix.

The present study examines the mechanics of the thermally loaded bimaterial interface
in detail. The apparent violation of equilibrium documented in the experimental study is
investigated by considering a number ofsimple bimaterial case studies which can be analyzed
as two- and three-dimensional problems which reflect the nature of the phenomenon. but
which are more readily amenable to numerical solution than those for which the exper
imental data are available.

MECHANICS CONSIDERATIONS

Timoshenko's solution for the stresses in the bimetallic strip. summarized in eqn (I).
predicts two linear axial stress distributions across the strip. The normal stress perpendicular
to the interface is zero in this one-dimensional approach. This cannot be applied to the
geometry in Fig. 2. which represents a square bimetal plate. which is outside the (two-to
one) condition determined by Hess (1969). [t might be argued that Hess's two-dimensional
representation would be appropriate to this problem. in which the stresses arc independent
of the coordinate :. However. further application of Hess's own arguments for the free
body di<lgr<lllls for the steel/br<lss plate under thermal 10<lding suggests that the problem is
three-dimensional, <IS shown in Fig. 3. The plane elasticity appro<lch yields the free body
diagr<lms in Fig. 3<1. essenti<llly those used by Hess to illustrate the need for the norm<ll and
she<lr stress system (fT", r n) for equilibrium <It the free ends. However. precisely the s<lme
arguments must be <lpplied <lcross the thickness of the pl<lte, as shown in Fig. 3b. Thus
there will be a skin or bound<lry layer ncar the interf~lce in e<lch m<lteri<ll. This interface
effect region is <I zone <lround the interf~lce. intersecting the free surfaces, <lnd extending
some dist<lnce within the m<lterial. [n this region a three-dimensional stress system occurs,
and speci<l' churacteristics will be observed at an edge. where two such regions intersect.
This implies th<lt the two-dimensional an<llysis of Hess may be applic<lble to the mid-plane
of the bimetal pl<lte, but not very close to the ends. However. no matter how thin the plate,
Hess's solution will not predict the stresses on the surface of the plate close to the bimaterial
interface. An essenti<llly similar effect is observed in the finite element analysis of the free
edge effect stresses <It a ±O interf<lce in a composite I<lminate (Griffin. 1988).

The implication of this is that the experiment of Wood el al. (1989) will be capturing
this free-edge effect in a three- rather than two-dimensional problem. The central issue is
then how can the experimental observation that there are large normal stresses perpendicular
to the interface on either side of it be rationalized in terms of classical equilibrium con
siderations'! A further question concerns the size of extent of the interface effect region;
what scale must be considered in order to capture it? It is clear that even in the bimetallic
strip there will be an interface eITect region which does not influence the curvature of the
strip when thermally 10<lded, but which m.IY suITer from highly localized stresses which
could ultimately cause failure.

[I' the concept of the interfacial boundary region is correct. and Wood's experimental
observations <Ire <llso correct. then this region must be very small and very large stress
gradients must be present within this region if equilibrium conditions were to be satisfied.
Thus <lny an<llysis of the problem must have sufficient resolution to c<lpture these gradients
within this region. Treatments of the free-edge effects in composites suggest that singular
stresses will occur (Pipes and Pagano. 1970; Wang and Choi. 1982), so numerical models
will have to have very fine meshes.
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Fig. 3(a). Deformation, free body diagrams and stress systems of the thermally loaded bimetal plate
in the :c-y plane.
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Fl:"ITE ELEME:-.lT MODELS

Two-dimensional finite element models of Wood's bimetal plate are attractive since
they can be performed with modest computational resources even for very refined meshes.
Several such models are presented below in order to illustrate the limitations of two
dimensional stress analyses and the nature of the stress systems near a bimaterial interface.
A two-dimensional plane stress model of the steel/brass plate is described below as the 2-0
plate model. for the x-y plane in Fig. 1. Another approach is to consider the y-= plane
through the middle of the plate in Fig. 2. defined by x = 2.20 in. It might be argued that a
plane strain model could be used to investigate the stresses in this slice. near the interface.
but the thermal loading precludes this. Instead. a plane stress analysis is presented below.
and denoted the 2-0 slice model. Rather than consider two plates. two steel/brass cylinders
can be analyzed as a two-dimensional axisymmetric problem without the uncertainties of
the plane stress/plane strain arguments. A bimetal cylinder is discussed below under the
heading the 2-0 axisymmetric model. The same mesh as the 2-0 slice model can be used
and the two sets of results compared with each other. In terms of the experimental data
available for the steel/brass plate. the normal stresses parallel to the interface can be
examined to see if the trends in the numerical models reflect the gradients needed to satisfy
equilibrium while validating the experimental observations.

The plate-like geometry of Fig. 2 is not amenable to full three-dimensional analysis
without recourse to substantial computational resources. To illustrate the three-dimensional
nature of the himaterial interface at an edge. two cuhes with the properties of steel and
brass are modeled. The model is described helow under the heading the 3-0 model.

All of the tinite clement calculations were performed on an Apollo ON 4000 work
station using the FINEL and AHAQUS codes. The analyses were linear. and used the
material properties and temperature ehangc shown in Fig. 2.

2-D pit/It' model
The gcometry shown in Fig. 4a. exploiting symmctry to produce a plate oflength equal

to half the length of the plate. was analyzed using four-node constant strain clements. Thesc
calculations yielded the deformed mesh shown in Fig. 4b. This deformed shape is similar

2.2"

2.2"

y
Steel

Brass

Fig. J. Geomclry (a) and deform...d m...sh (bl in a :!·D plat... analysis of Wood ('( </1. (1989) specimen.
fT, (c). IT, (d) and f .. ( ... ) contours in a :!·D pl'lt... analysis of Wood ('( </1. (1989) specimen.
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to that used in the free body diagrams developed in Fig. 3a. Contour maps of the normal
stress (1 ( are shown in Fig. 4c. It is clear that at the center of the plate the stresses are almost
independent of x. in agreement with Hess's observation. The contour maps of (1. are shown
in Fig. 4d. Except near the free surface. these stresses are approximately zero. A large
gradient in (1. is observed at the free surface near the interface. Along the interface shear
stresses are observed. as shown in Fig. 4e. but at the middle of the plate these approach
zero. Thus the two-dimensional finite element solution has all the features suggested by
Hess. and even Timoshenko's assumptions are satisfied. to a reasonable degree. on a line
perpendicular to the interface. through the middle of the plate. The mechanics arguments
made above. however. suggest that this model will not provide an accurate assessment of
the surface stresses at the interface of a real plate. even near the middle.

2-D slice moele!
The model shown in Fig. 5a was used. and the symmetry of the problem was exploited

to produce a strip of width equal to half the thickness of the plate in Fig. 2. Eight-node

1

(WX"

J-_T
Fig. 5(a). Geometry and finite element mesh used in a 2-D slice analysis for Wood el 01. (1989)

specimen.
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quadrilateral elements were employed. Note the very fine scale of the mesh in the vicinity
of the bimaterial interface.

The results of the finite element computations are presented as stress distributions
along four key lines defined in Fig. 5b. These consist of the line AA which corresponds to
a line on the surface on either side of the interface. the lines BB and DD which are parallel
and near the interface in the steel and brass respectively, and the line CC which lies along
the interface. The stress components along AA are shown in Fig. 5c in which it is seen that
the normal stresses (1, on either side of the interface are indeed of opposite sign as the
intert~lce is approached. and very close to the interface the stress in the brass undergoes a
very rapid reversal. The normal stress (1: and the shear stress T, : are essentially zero. as
expected from the boundary conditions. except very close to the interface: this is a finite
element modeling phenomenon which will be discussed later. The stress distributions on
either side of the interface (Fig. 5d. f) confirm the ditferences in sign in (1\ and show the

L.
I

0.16"

A

- 22"

2 '"

Fig. 5(b). Cuurdinate system and location of lines fur whicb dat;1 an: presented 11\ tbe 2-D slice
analysis.
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Fig. 5(e)-(f). The stress distributions along line AA (e). line BB (d), line CC (c) and line DD (0
for the 2-D slice analysis.
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very rapid gradient in (J,. as the surface is approached. The stresses along the interface line
CC are shown in Fig. 5e. in which it is apparent that the stress (1 .. is tensile at the interface
on the free surface. Note that the stresses (J: are unreliable along CC since these are
discontinuous along the interface. and the calculation takes the average of these values.

2-D axisymmetric model
This model. shown in Fig. 6a. represents two solid cylinders of steel and brass. The

same mesh as in the 2-D model was used but the calculation was performed with the
axisymmetric option. Note that this needed a hole of small diameter to be modeled along
the axis.

The stresses computed along the line AA in this model are shown in Fig. 6b. The
distributions are similar in form to those of the plane stress 2-D slice case study. but the
peak magnitudes of (J,. are somewhat greater. The effect of the mesh size on the stress
distributions was examined by refining the mesh to yield minimum distances between nodes
of a half and then a third of that in the initial mesh. The results of this convergence study
are shown in Fig. 6c-e for a region very close to the interface along AA. and detailed in
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Fig. 6(a). Geometry and finite element mesh used in 2-D al\isymmetric model analysis.
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Table I. The results for a,_ are presented in Fig. 6c. which shows that the greatest (com
pressive) stress in the brass is well captured in all meshes and occurs at a distance of about
0.009 in. (or. about 0.11,. where, is the radius of the cylinders) from the interface. As the
mesh is refined the stress ay in the steel increases, indicating that either the mesh was not
fine enough to capture a turn around in the steel similar to that in the brass but much closer
to the interface, or that ay does not converge, but is singular. If such a stress turn around
in the steel were to occur this would have to take place at a distance of less than 0.00 I5 in.
(about 0.019,) from the interface. The corresponding normal stress (1: and the shear stress
f y: are plotted in Fig. 6d and e, respectively. These should be zero everywhere; the non-zero
values define regions in which the computations are not reliable. As the mesh is refined this
zone becomes smaller so that, for the finest mesh, this represents a region ofless than 0.0015
in. on either side of the interface. Within this region none of the stress component values
can be used with confidence.
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Table I. Convergence study for 2-D axisymmetric model

Peak stress <1, in steel Peak stress a, in brass

~linimum nodal spacing
tin.)

Zone of uncertainty.
<1, #- O. r" #- 0 (in.) Value (ksi)

Location
(.I'. in.) Value (ksi)

Location
(.I'. in.)

0.0011
0.00055
0.00037

y = -0.0044 - 0.0044
\. = -0.0022 - 0.0022
y = -0.0015 - 0.0015

19.4
22.2
23.8

0.0044
0.0022
0.0015

-8.8
-8.85
-8.85

0.0078
0.0094
0.0093

3-D model
The steel and brass cubes in Fig. 7a were modeled first with eight-node and then 20

node brick elements. The line AA in Fig. 7b represents an edge which crosses the interface.
The stresses near the interface will then be affected by two interface effect zones. The normal
stress (1" along this line is shown in Fig. 7c for the eight- and 20-node element models. The
peak stress values are similar to those in the cylinder case and the (compressive) stress in
the brass cube also reaches its greatest value. However. the eight-node element model is
not sutlicient to define the location with confidence. and the 20-node element model reached
the practkal limits of the Apollo DN4000 workstation used in the calculations when run
tinH:s of n h were needed. This limitation was circumvented using a two stage global-local

y

-- ./ ./

steel

-,/
1/

" brass

-

U.US"

z~

u.us

Fig. 7(a). Geometry and FEM mesh in a 3-D cube analysis.
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approach (Thompson and Griffin. 1989) to show that the peak stress value and its location
in the brass were reliable. The location of the peak stress in the brass occurred at about
O.OW in. (or about L/20. where L is the cube side) from the interface. The three stress
components at" a,. and ! •• are presented in Fig. 7d for the 20-node element model. Again
there is a region of uncertainty on either side of the interface where the boundary conditions
are not satisfied by the computed stresses. The stresses computed along the line BB. a line
crossing the interface 0.017 in. from the edge, are shown in Fig. 7e. The distribution of the
normal stress a, has a similar form to that along AA. but the peak values are lower. Note
that along BB the stresses a.• and ! .•• do not have to be zero everywhere. The line CC in
Fig. 7b lies within the cubes and crosses the interface. The stresses a.•• a.•. and !.,. along this
line are shown in Fig. 7f. Again. near the interface. the normal stress a, in the steel and
brass is of opposite sign.
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Three-dimensional representations of the distribution of the normal stress (1,. can also
be m<lde. For a small region ncar the edge, three-dimensional plots arc prescnted on planes
0.004 in. from the interface, in the bmss, at the interface, and 0.004 in. from the interface,
in the steel, in Fig. ga-e, respectively. Compressive stresses (1y are observed in the brass on
a plane 0.004 in. from the interface, as shown in Fig. 8a. These have a value of about 8 ksi
away from the edge, but reach a peak (compressive) value of about 12 ksi at the edge. The
interface el1cct zone extends within the material about 0.004 in. to 0.008 in. (or about L/20
to L/IO). The normal stress (1, on the interface plane is shown in Fig. 8b. The stress at the
free surface is tensile with a value of about 7 ksi, rising to 12 ksi at the edge. It is important
to recall the limitation of the model in which the mesh is not fine enough to provide an
unequivocal value of stress on the interface at the free surface. If the stress field were indeed
singular, then finer meshes would simply produce larger stresses at the free surface. Very
large tensile stresses are documented in Fig. 8c. These are about 18 ksi, rising to 28 ksi at
the edge.

DtSCUSSION

The original motivation for this study was the conflict between analytical predictions
of the stresses at the bimaterial interface and those from an experiment which documented
an apparent violation of equilibrium. The 2-D plate model presented above reflected all the
features of Hess's analytical solution. This finite element solution is compared with Wood's
experimental data in Fig. 9, in which the stress components along a line AA midway between
the edge and the center of the plate are presented. It is seen that the stresses (1.• and Tx)' are
in good agreement, but the normal stress (1v is quite different in the analysis and experiment.
The lack of agreement in (1y strongly suggests the presence of shear stress gradients normal
to the plane of the plate, and the presence of three-dimensional effects.



1072 M. Y. TSAl and 1. MORros

2U -

15

10

-10

-I.~

·20

·2.2 -1.1

.,
f- I

I

"

o
y (in)

11,"

Steel

I.l 2.2

Fig. 9. A comparison of 2-D plate model ;1111.1 moire results (Wood ('/ al" 19~N) ailing a line 1\1\
(midway bctwt."Cn the edge ;lI1d the center of the plale).

A comparison of the Timoshenko. moire and 2-D plute models for (1, is shown in Fig.
10 for the same line AA. It is c1eur thutthe experiment is successful in determining (1, so it
would seem reasonable to believe thut av was also correct. Note ulso that Timoshenko's
solution gives acceptuble values even along this line. The equilibrium condition viol.ltion
seems to be resolved in the 2-D slice and 2-D axisymmetric models. Both of these predict
compressive stresses (1y in the brass and tensile stresses in the sted. close to the interflu;e.
This agrees with Wood's experimental data. However. the numerical analyses also predict
that the stress in the brass re.lches a delinite peak value at some location near the interface
before becoming Ic:ss compressive or even tensile. Both linite element models provide similar
distributions of a,. on the surface near the interface. but the pe.lk values diller slightly, as
shown in Fig. II.

The 3-D model illustrates a phenomenon not present in the other numerical analyses,
that of an edge crossing the interface. In such a region two interacting free surlltce effects
occur, and very large normal stresses are produced. These may be singular, but practically
plastic deformation or local delamination might occur. In terms of Wood's experiment, the
normal stress a, would be distributed qualitatively as shown in Fig. 12. In this case. an
experiment which measured surface parameters (displacements, strains. stresses) ncar the
interface would document three-dimensional phenomena. no matter how thin or large the
plate was. The turn around in the compressive stress in the brass seems to have occurred
at a distance which was too close to the interface to be detected in Wood's experiment.

The occurrence of this interface effect region is important and well appreciated in the
mechanics oflaminated composites as the free edge effect. The nature of the stress gradients
and stress signs of the normal stresses across such interfaces does not. however, seem to
have been documented previously. The scale on which these stresses occur can have great
practical significance in laminated fiber composites since these interface (free-edge) stresses
may act over small distances comparable to the fiber diameter (or grain size in isotropic
metals). so the continuum medium approach is limited to a scale much larger than the
microstructural features. Important consequences are also apparent in the design and
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analysis of bimaterial components of homogeneous elements. Thermal loading can produce
very large normal stresses which can only be determined with three-dimensional finite
element analyses with extremely fine meshes in the interface region.

CONCLUSIONS

The thermally loaded bimaterial interface suffers from a three-dimensional stress
system in the vicinity of the free surface. This consists of surface stresses normal to the
interface of opposite sign in each material. Very close to the interface high stress gradients
occur and the stress in one ofthe materials. at least. will change sign to satisfy the equilibrium
conditions at the interface. This boundary or skin effect will occur near the free surface and
around the interface in all bimaterial problems no matter what the relative dimensions; so
that in the case of the bimaterial strip model of a thermostat. for example. the one-dimen~

sional (Timoshenko) approach would be successful in predicting the radius of curvature,
and Hess's analysis would indicate the extent over which the two~dimensional shear stress
system operated near the free ends of the strips. but the three-dimensional free surface
effects must be incorporated in an evaluation of the largest stresses occurring in this and
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related problems. The edges which cross the interface will be subjected to the largest normal
stresses.
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